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Abstract— Robust techniques such as sparse subspace
clustering (SSC) have been recently developed for hyperspectral
images (HSIs) based on the assumption that pixels belonging to
the same land-cover class approximately lie in the same sub-
space. In order to account for the spatial information contained
in HSIs, SSC models incorporating spatial information have
become very popular. However, such models are often based
on a local averaging constraint, which does not allow for a
detailed exploration of the spatial information, thus limiting their
discriminative capability and preventing the spatial homogeneity
of the clustering results. To address these relevant issues, in this
letter, we develop a new and effective �2-norm regularized
SSC algorithm which adds a four-neighborhood �2-norm regular-
izer into the classical SSC model, thus taking full advantage of the
spatial-spectral information contained in HSIs. The experimental
results confirm the potential of including the spatial information
(through the newly added �2-norm regularization term) in the
SSC framework, which leads to a significant improvement in the
clustering accuracy of SSC when applied to HSIs.

Index Terms— Hyperspectral images (HSIs), �2-norm
regularization, sparse subspace clustering (SSC), spectral
clustering.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) provide a wealth of
spectral information, resulting in spectroscopic diagnos-

tic features that support fine land-cover classification and
clustering [1], [2]. Due to the difficulty of labeling a large
number of training samples for the supervised classification of
high-dimensional HSI data, clustering has been widely used
in various applications and offers an unsupervised alternative.
However, clustering is usually a very challenging task because
of the large spectral variability and complex spatial structures
present in HSIs.

To date, many different clustering methods with various
working mechanisms have been proposed for HSIs, such as
k-means [3], the unsupervised artificial immune network for
remote sensing image classification [4], spectral curvature

Manuscript received September 22, 2016; revised November 1, 2016;
accepted November 2, 2016. Date of publication November 18, 2016; date
of current version December 26, 2016. This work was supported by the
National Natural Science Foundation of China under Grant 41571362 and
Grant 41431175. (Corresponding author: Hongyan Zhang.)

H. Zhai, H. Zhang, L. Zhang, and P. Li are with the State Key Laboratory
of Information Engineering in Surveying, Mapping, and Remote Sensing,
Collaborative Innovation Center of Geospatial Technology, Wuhan University,
Wuhan 430079, China (e-mail: zhanghongyan@whu.edu.cn).

A. Plaza is with the Hyperspectral Computing Laboratory, Department
of Technology of Computers and Communications, Escuela Politecnica,
University of Extremadura, E-10071 Cáceres, Spain.

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2016.2625200

clustering [5], clustering by fast search and find of density
peaks (CFSFDP) [6], and so on. However, due to the fact that
only spectral information is used to discriminate the different
classes and the spatial contextual information present in the
data is largely ignored, a large amount of salt-and-pepper noise
generally appears in the final cluster map, and the discrimi-
native ability is limited. Previous studies have demonstrated
that spatial information should be simultaneously utilized
together with spectral information to assist with the clustering
of HSIs [7]. In recent years, many spectral-spatial clustering
algorithms have been proposed to enhance the clustering
accuracy by incorporating spatial information, such as fuzzy
c-means clustering with spatial constraints (FCM_S1) [8],
Markov random field clustering [9], and spatially constrained
k-means [10]. Unfortunately, most of these methods still suffer
from errors due to the uniform feature point distribution within
the feature space, which is often caused by the large spectral
variability observed in HSIs.

Recently, a robust technique known as the sparse subspace
clustering (SSC) model has been successfully applied to per-
form HSI clustering and has shown great potential [11], [12].
However, the SSC model only focuses on analyzing the
spectral features without considering the spatial information,
which limits both its discriminative capability and the spatial
homogeneity of the final clustering result. In fact, the sparse
coefficient matrix should be piecewise smooth because of the
spatial relationship and contextual dependence between the
representation coefficient vector of the center pixel and its
neighbors. In our previous work [11], the spectral-spatial SSC
(SSC-S) algorithm was proposed to improve the clustering
accuracy. SSC-S can help to guarantee spatial smoothness
and can reduce the representation bias by enforcing a local
(eight-connected neighborhood) averaging constraint on the
coefficient matrix, based on the assumption that pixels in a
local window often have similar spectra and belong to the same
class. However, this local averaging strategy for incorporating
the spatial information is very heuristic and can often be
unrepresentative, especially in complex land-cover distribution
areas.

To address this issue, this letter introduces a new
�2-norm regularized SSC (L2-SSC) algorithm for HSIs that
fully exploits the spatial-spectral information contained in the
data. This method incorporates spatial contextual information
into the SSC framework by means of the �2-norm regularizer.
Compared with SSC-S, this approach utilizes the spatial infor-
mation to constrain the spectral representation in a more elab-
orate way. Adjacent pixels in the four-connected neighborhood
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model are thus incorporated into the analysis process, which
can effectively promote piecewise smoothness of the sparse
coefficient matrix. The �2-norm spatial regularizer can better
account for the spatial homogeneity of the final clustering
result, as neighboring pixels generally belong to the same
thematic class and are likely to have similar representation
coefficients with respect to the same sparse representation
basis, according to the scheme of sparse representation.

II. L2-NORM REGULARIZED SPARSE SUBSPACE

CLUSTERING ALGORITHM

In this section, the SSC model is first briefly reviewed.
We then show how we integrate the �2-norm regularizer
into the SSC model to effectively incorporate the spatial
information, which can significantly enhance the clustering
results for HSIs by exploiting the piecewise smoothness of
the sparse coefficient matrix.

A. Clustering HSIs With Sparse Subspace Clustering

In the classical SSC model for HSIs, all the pixels are
assumed to be sampled from a union of subspaces

⋃l
i=1 Si ,

with each subspace corresponding to a certain land-cover
type, where l denotes the number of subspaces or classes.
It then exploits the self-representation property of the data
to represent each pixel as a linear or affine combination
of the others [13]. In addition, it depends on the assump-
tion that the nonzero coefficients lie in the corresponding
class-dependent low-dimensional subspace [11]. With the
2-D reordered HSI matrix being used as the dictionary, the
SSC optimization problem can be modeled as follows:

min
C,N
‖C‖1 + λ‖N‖2F

s.t. Y = YC+ N, diag(C) = 0, CT 1 = 1 (1)

where Y ∈ R
D×MN is the 2-D HSI matrix, D represents

the number of bands, M refers to the height of the data,
N stands for the width of the data, C ∈ R

MN×MNis the
sparse coefficient matrix, N ∈ R

D×MN is the representation
error matrix, and λ is the sparsity/noise tradeoff parameter.
The constraint diag(C) = 0 is used to eliminate the trivial
solution of representing a pixel as itself [13]. In addition,
the constraint CT 1 = 1 shows that it is a case of an affine
subspace, with 1 denoting a vector consisting of only ones. The
�1-norm regularization can promote the sparseness of C and
is guaranteed to be subspace-preserving [13].

This model can be easily solved using the alternating
direction method of multipliers (ADMM) [14]. We then use
the obtained sparse coefficient matrix C to construct the
adjacent matrix W ∈ R

MN×MN, which is called the similarity
graph [11], [13], with each element standing for the similarity
between two pixels

W = |C| + |C|T . (2)

The “symmetrization” form in (2) is adopted to strengthen
the connection of the graph, and the final clustering result is
achieved by applying the spectral clustering algorithm to the
similarity graph [15], [16].

Fig. 1. Graphical interpretation of each column and each row of the sparse
coefficient matrix C.

B. L2-Norm Regularized Sparse Subspace Clustering Model

By reordering the 2-D matrix C ∈ R
MN×MN into a

3-D cube Ĉ ∈ R
M×N×MN along the rows, as shown in

Fig. 1, each band of Ĉ denotes the representation coefficient
distribution of the whole image with respect to a single atom,
and can be seen as a specific “fractional abundance” with
respect to an “endmember” in the unmixing domain (using
spectral unmixing jargon). Considering that a specific land-
cover material should be regionally distributed in the image,
i.e., two spatially neighboring pixels in an HSI usually have
a high probability of belonging to the same thematic class,
and then, their representation coefficients should also be very
close, with respect to the same sparse basis, according to the
working mechanism of the SSC framework. Therefore, each
band of Ĉ should be piecewise smooth, which means that it
is reasonable to apply a spatial constraint to it to improve the
clustering performance.

Based on this fact, it is natural for us to utilize the neighbor-
ing coefficient vectors to constrain the target coefficient vector
to reduce the representation bias. In the SSC-S model [11],
the mean of the local window is utilized to regularize the
center representation coefficient vector, assuming that pixels
in a small window should share the same dominant subspace.
However, this local averaging constraint is heuristic. That is
to say, it fails to exploit the accurate relationship between the
target coefficient vector and its neighbors, especially for the
case in which the difference between the mean coefficient in
the local window and the center coefficient is large. Hence,
SSC-S obtains a relatively limited improvement over the
performance of SSC.

At this point, considering the ability of the total varia-
tion (TV) regularizer to promote piecewise smoothness and
preserve edges [17], it seems natural to add the TV spatial
regularization term into the SSC model framework to model
the sparse optimization problem in the following formulation,
to better account for the spatial neighborhood information and
promote the piecewise smoothness of C:

min
C,N
‖C‖1 + λ

2
‖N‖2F +

α

2
TV (C)

s.t. Y = YC+ N, diag (C) = 0, CT 1 = 1 (3)

where α trades off the spectral and spatial terms, with the
TV constraint defined as

TV (C) =
∑

{i, j }∈γ
‖Ci − C j‖1. (4)
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Algorithm 1 L2-SSC for HSIs
Input:

1) A 2-D matrix of the HSI containing a set of points
{yi }MN

i=1, in a union of l affine subspaces {Si }li=1;
2) Parameters, including the cluster number l and the

regularization parameters λ and α.

Main algorithm:
1) Construct the L2-SSC optimization model (5) and solve

it to obtain C using ADMM;
2) Normalize the columns of C as Ci ← Ci‖Ci‖∞ ;
3) Construct the similarity graph with (2);
4) Apply spectral clustering to the similarity graph to

obtain the final clustering results.

Output :
A 2-D matrix which records the class labels of the HSI

clustering result.

This is a vector extension of anisotropic TV [17], where
γ denotes the set of horizontal and vertical neighbors. How-
ever, it should be noted that the optimization problem in (3),
although convex, is very hard to solve owing to the nonsmooth
term (the TV spatial regularizer [17]). In addition, unlike
the unmixing problem, where the endmember dictionary is
usually very small, the dictionary Y in the SSC framework
is much larger, which leads to a much higher dimensional
sparse coefficient matrix C compared with the abundance
matrix. As a result, it would take a very long time to achieve
convergence for the optimization problem in (3).

To this end, an effective �2-norm spatial regularizer is
utilized instead of the TV regularizer to incorporate the spatial
information, in order to further assist with the spectral analysis
of SSC. This is also a four-connected neighborhood spatial
constraint, like the TV regularizer, but it is much easier to
solve than TV because it is both a convex and smooth term.
Compared with the local averaging constraint, it incorporates
the spatial information in a much more elaborate way and
can reduce the artificial error caused by the deviation between
the target coefficient vector and the neighboring coefficient
vectors to a minimum. By incorporating the �2-norm spatial
regularizer into the SSC model, the L2-SSC problem can be
modeled as follows:

min
C,N
‖C‖1 + λ

2
‖N‖2F +

α

2

∑

{i, j }∈γ
‖Ci − C j‖22

s.t. Y = YC+ N, diag (C) = 0, CT 1 = 1. (5)

Equation (5) can be efficiently solved with the ADMM [14].
In the same way as SSC, C is used to build the similarity
graph. The final result can then be achieved by applying the
spectral clustering algorithm to the similarity graph.

C. L2-SSC Algorithm Flowchart

The proposed L2-SSC is summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed
L2-SSC algorithm, the following spectral and spectral-spatial

Fig. 2. Cluster maps of the different methods with the ROSIS Pavia
University image. (a) False-color image (R: 102, G: 56, B: 31). (b) Ground
truth. (c) k-means. (d) FCM. (e) CFSFDP. (f) SSC. (g) FCM_S1. (h) SSC-S.
(i) L2-SSC.

clustering methods were selected as benchmarks: k-means [3],
FCM [18], CFSFDP [6], SSC [13], FCM_S1 [8], and
SSC-S [11]. A common strategy adopted in clustering is to
treat the number of clusters as a prior, and then manually
determines the thematic information for each cluster group
through cross-referencing between the clustering result and the
image. In our experiments, all the parameters of each cluster-
ing method were manually tuned to the optimum. In order
to thoroughly evaluate the clustering performance of each
method, both visual cluster maps and quantitative evaluations
of the precision (producer’s accuracy, overall accuracy (OA),
and kappa coefficient) are given.

A. Experimental Results and Analysis
The proposed method was evaluated on two widely used

hyperspectral data sets: the Pavia University image and the
Washington DC Mall image. The first scene was collected by
the Reflective Optics System Imaging Spectrometer (ROSIS)
sensor, at a size of 610 × 340 × 103 with a 1.3-m geo-
metric resolution and nine main classes. A typical subset of
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TABLE I

QUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING ALGORITHMS FOR THE ROSIS PAVIA UNIVERSITY IMAGE

TABLE II

QUANTITATIVE EVALUATION OF THE DIFFERENT CLUSTERING ALGORITHMS FOR THE WASHINGTON DC MALL IMAGE

Fig. 3. Cluster map of the L2-SSC method with the Washington DC Mall
image. (a) False-color image (R: 63, G: 52, B: 36). (b) Ground truth.
(c) L2-SSC.

200 × 100 was selected as our test data, containing eight
main classes [11]. The second data set was acquired by
the hyperspectral digital imagery collection experiment sensor
over the Washington DC Mall, at a size of 1208 × 307 × 109.
Similarly, a typical subset of 160 × 145 was selected as the
test data, with six main classes. The false-color composites and
the cluster maps obtained with these two scenes are shown in
Figs. 2 and 3, with the corresponding quantitative evaluations
provided in Tables I and II, respectively. The best result of each
row is shown in bold, with the second-best result underlined.

From Figs. 2 and 3 and Tables I and II, it can be clearly
seen that the spectral-only clustering methods fail to achieve
satisfactory results, but the spectral-spatial methods signifi-
cantly improve the performance by considering the spatial
information. Specifically, k-means and FCM obtain inferior
clustering performances for both scenes, with large amounts of
misclassification and salt-and-pepper noise due to their weak
discriminative capability for HSIs. Although CFSFDP obtains
a better performance with smoother cluster maps, the accuracy
is still unsatisfactory, because the density model cannot deal
well with the complex structure of HSIs. Compared with

FCM, FCM_S1 improves the clustering performance to a large
degree for both experiments to obtain much smoother cluster
maps, which clearly reflects the importance of incorporating
spatial information.

We now turn to the clustering results of the three subspace-
based methods. The original SSC algorithm performs badly
in both scenes, with a great deal of misclassification and salt-
and-pepper noise, which leads to a low clustering accuracy.
In comparison, SSC-S improves the performance of SSC
to some degree by exploiting the inherent spatial-spectral
duality of the HSIs with the local averaging constraint to
obtain smoother cluster maps. However, these improvements
are still limited and are far away from fully exploiting the
potential of SSC. As the local averaging strategy is very
heuristic and empirical, it fails to exploit the accurate spatial
relationship and dependence between the target representation
coefficient vector and the neighboring coefficient vectors.
Compared with SSC-S, the proposed L2-SSC algorithm sig-
nificantly improves the performance of SSC, decreasing the
misclassification to a great degree and effectively promot-
ing spatial smoothness by exploiting the spatial contextual
information from a much more elaborate perspective. As a
result, much smoother and more accurate clustering results are
achieved. In summary, L2-SSC achieves the best performance
in both the visual and quantitative evaluations. Improvements
of more than 11% and 6% in OA are achieved compared with
SSC-S for the Pavia University image and Washington dc
image, respectively, which proves the effectiveness and supe-
riority of the proposed L2-SSC method.

B. Parameter Analysis

There are two main parameters in the proposed L2-SSC
algorithm: the regularization parameter λ and the spectral/
spatial tradeoff parameter α. Parameter λ acts as a tradeoff
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Fig. 4. Analysis of parameter β: change in the OA with various values of
β. (a) Pavia University. (b) Washington DC Mall.

Fig. 5. Analysis of parameter α: change in the OA with various values of α.
(a) Pavia University. (b) Washington DC Mall.

to balance the sparsity term and the data fidelity term. Indeed,
it is decided by the following formulation [11], [13]:

λ = β/μ (6-a)

μ � min
i

max
j �=i

∣
∣yT

i y j
∣
∣. (6-b)

From (6-a) and (6-b), it can be clearly seen that λ is actually
decided by β, as μ is fixed for a certain data set. Hence,
in practice, we only need to fine-tune β. An accuracy change
curve of the OA with various values of β is drawn for each
data set to find the optimum value, as shown in Fig. 4. From
Fig. 4, it can be observed that β is independent of the data set,
to some degree, as the optimal value always lies in the range
of [1000, 1600] and can be easily fine-tuned for each data
set. In addition, the optimal clustering accuracy values for the
SSC and SSC-S algorithms are also plotted on these figures.
It can be seen that L2-SSC always achieves a better clustering
accuracy than the optimal values of SSC and SSC-S, which
further confirms its effectiveness.

Similarly, an OA versus α curve is drawn for the spec-
tral/spatial tradeoff parameter α to explore its influence on the
clustering performance, as shown in Fig. 5. As can be seen
from Fig. 5, the spatial information plays a very important
role in the clustering process. This parameter is also relatively
stable, as the optimal value always falls in a narrow range
of (0, 10] × 103 and can be easily fine-tuned for a certain
data set. Over a large range of α, L2-SSC can achieve a better
clustering accuracy than the optimal values of SSC and SSC-S.
Hence, the L2-SSC algorithm does make sense for real
applications.

IV. CONCLUSION

In this letter, we have proposed a new L2-SSC algorithm for
HSIs. By incorporating the spatial contextual information with
the �2-norm regularizer, which more elaborately constrains the
spectral representation from the four-connected neighborhood

perspective, the proposed algorithm can accurately exploit the
spatial contextual information and dependence between the
target representation coefficient vector and the neighboring
coefficient vectors. In this way, the piecewise smoothness
of the sparse coefficient matrix and the homogeneity of the
final clustering result can be effectively enhanced, leading to
consistent results from both the spectral and spatial points
of view. The experimental results clearly show that the pro-
posed L2-SSC algorithm achieves a state-of-the-art clustering
performance for HSIs. However, the proposed method could
be further improved by the adaptive determination of the
regularization parameters and efficient implementation in a
high performance computing architecture, which will be in
our future work.
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